Showing posts with label hypoxia. Show all posts
Showing posts with label hypoxia. Show all posts

Wednesday, April 23, 2014

Chili Peppers Run Hot And Cold

Biology concepts – obesity, brown adipose tissue, agonist/antagonist, protective hypothermia, hyperthermia, reactive oxygen species, ischemia, hypoxia

When The Wizard of Oz was released in 1939, it just barely turned a profit. The '39 version was the third attempt at filming the children’s classic, and the first two efforts had not fared much better.


I don’t see how people didn’t take to the Wizard of Oz right away.
It had new technology for the movies, a good villain, and all those
little people. The tin man on the left was played by Jack Haley, but
originally it was supposed to Buddy Ebsen (Jed from the Beverly
Hillbillies). Unfortunately, the lead metal in the makeup almost
killed him during the makeup/costume tests. Glenda the good witch
(Billie Burke) had that squeaky voice. She only began acting
after her husband, Flo Ziegfeld, Jr. (son of the Ziegfeld Follies
creator), went belly up on Black Monday in 1929.
Over time, what was first considered bad has become a classic. In what many people consider the best year ever in film, The Wizard of Oz is now a favorite among favorites, more than Goodbye Mr. Chips, Mr. Smith Goes to Washington, Stagecoach, or even Gone With the Wind – all produced in 1939.

It’s smart to hang on to useless things and knowledge, something might change. For Oz – it was television. For some reason, this film translated better to TV than it did the big screen. The Library of Congress now rates it as the most viewed film ever. And it wasn’t even shown on TV until 1956. The weird part – very few people in 1956 owned a color television, so Dorothy’s entrance into the land of Oz was no big deal for most folks until the late 1960’s.

Why am I telling you this story? Because the same thing happens in biology and medicine. Problems can become assets if the right environment is created or the proper setting is found. We've been discussing the capsaicin receptor, TRPV1, for some weeks, and this is where I find a negative being turned into a positive.

As you know, the TRPV1 capsaicin receptor is primarily a heat sensing receptor for thermoregulation of the body. If activated by noxious (painful) high temperatures, it generates a pain signal and initiates a cooling program for the body, including sweating.

In an effort to block TRPV1 to create analgesia (no pain), the problem has been that blockers also stop thermoregulation and the patient overheats. This prevents most TRPV1 antagonists (substances that bind the receptor but don’t allow function) from being used as analgesics. But what about in other situations?

I was wondering if TRPV1 antagonists might be helpful in obesity, by helping burn off some fat through increased cooling activity. If they are indeed helpful, nobody knows about it yet. I couldn’t find even one paper that studied TRPV1 antagonists as a way to induce increased energy expenditure and weight loss. In fact, I learned just the opposite. Capsaicin and other TRPV1 agonists might help with weight loss.


On the left is brown fat and white fat. You can see that brown fat
actually looks browner because of all the mitochondria that it
contains. White fat contains a lot more lipid. The right cartoon
shows that a cold challenge initiates uncoupled fat metabolism in
brown fat, creating heat. But the cold also releases more fatty acids
from white fat, which can then be burned by the brown fat. The
involvement of bone comes from bone breakdown. Breakdown
releases a protein that stimulate white fat to release fatty acids,
this would provide energy for the brown fat.
We have discussed how TRPV1 activation by noxious heat helps to cool the body, but it turns out that noxious cold leads to TRPV1 activation as well, but in these cases, it brings an increase in heat production. So TRPV1 can cool you down or warm you up as needed. Pretty cool. You'll have to wait a few weeks to find out how a heat receptor senses noxious cold.

The heat induced by cold comes from increased activity of brown adipse tissue (BAT) – brown fat. We have talked about BAT before, how it is especially important for infants because they lose heat so easily. Brown fat has lots of mitochondria, but they don’t make ATP. They convert all the energy they burn into heat.

New research is showing that BAT can be important to adults as well. Those people that have more BAT tend to have less white fat, the kind that makes you bigger. What is more, a 2013 paper shows that cold temperature exposure can help create more BAT, and this effect is mimicked by capsaicin and other TRPV1 agonists.

If you expose adults to mildly cold temperatures for six hours a day, they start to make more BAT and this means they burn more energy for heat; therefore less energy is left to be stored as white fat. But the study also showed that giving the people capsaicin for weeks in a row generated the same increase in BAT and stopped white fat accumulation.

One mechanism involved is that TRPV1 agonists stimulate an increase in uncoupling protein (UCP) expression in BAT. This is the protein that permits the BAT mitochondria to produce lots of heat instead of lots of ATP and a little heat. The uncoupling protein activity in BAT uses excess calories to produce heat, so those calories are not available to make fat.


Here is how a stem cell becomes a fat cell (adipocyte).
The mesenchymal cell can go two directions, one
toward fat and one toward muscle. But notice you can
get to a brown fat cell through the pathway meant for
muscle cells. PG stands for prostaglandins; different
profiles of prostaglandins lead to a decision to become
a brown fat cell or a white fat cell. We know this picture
is incomplete now, because we have evidence that
TRPV1 agonists can drive the decision between
brown fat and white fat.
But there may also be another mechanism at work. A 2014 study in laboratory petri dishes shows that cells destined to become white fat cells can be stopped from changing by capsaicin. In cells called preadipocytes, capsaicin stopped their proliferation (dividing to become more cells) and their differentiation (changing) to become full-fledged adipocytes (fat cells). Another study (2012) showed that in liver, capsaicin could prevent the accumulation of white fat build up (called fatty liver) and could actually induce UCP protein expression in some fat cells, turning them into liver BAT. Amazing.

This all sounds fine, but the proof is in the pudding, so to speak. Capsaicin and other TRPV1 agonists have been shown to reduce white fat and total body mass in rabbits fed a high-fat/1% capsaicin diet, in mice fed a high sucrose diet, and in human patients kept cold or fed hotTomorrow I’m going to start eating hot peppers in a cold house – I’ll shrink away before your eyes.

What about on the other end of the thermometer? People freeze to death when they get too cold, and TRPV1 agonists will cool you off when too warm. No TRPV1 activity causes a reactive hyperthermia, and too much TRPV1 activity will induce a reactive hypothermia. But is there a time when inducing cold in a body with capsaicin would be a good thing?

Would we be talking about it if there weren’t an exception? It's called protective hypothermia, and it has become a very important treatment adjunct during stroke and some over conditions.


Ischemia (left) is often associated with coronary (heart) arteries.
Ischemia means a reduction in blood flow to a tissue or the whole
body. With less blood flow comes less oxygen, so tissue cells suffer.
Several mechanisms can lead to a lessening of blood flow. On the
right is hypoxia, which is often used when referring to the brain or
specific organs. Hypoxia is a reduction in oxygen to the tissues,
whether it comes from a reduction in blood flow or some other
reason, like fewer red blood cells, lower oxygen in the air, etc.
Protective hypothermia is an induced cold that is used to protect tissues from post-ischemic injury. When there is a reduction in blood (ischemia) or oxygen (hypoxia) to a tissue or organ, the cells are starved for oxygen and then become starved for ATP (you need oxygen to make ATP). With lower oxygen over time, either from low oxygen or reduced blood flow, the tissues get used to having lower oxygen levels.

Getting used to it would include down-regulating the systems that would normally combat the damage that could be caused by reactive oxygen species (ROS). Whenever oxygen is being used in tissues, ROS are an unfortunate by-product. Their name tells you that they’re reactive, which means they can react with many molecules in the cell and they will do significant damage.

When normal blood flow or oxygen perfusion is re-established, the sudden increase in O2 causes a spike in ROS (reperfusion injury) – until the cell can ramp up its antioxidant capabilities again. What medicine needs to do is find a way to increase the O2 without increasing the ROS damage.

Cold seems to do the trick. Reducing the temperature of the body reduces cell death and ROS after cardiac arrest, stroke, neonatal encephalopathy, or traumatic spinal/brain injury. Why? There have been a few ideas why.

The old hypothesis was that the lower temperature would reduce cellular metabolism, so that there is less need for O2. This would imply that the lower the temperature, the better. But very low temperatures might lead to injury or damage on their own. Also, extended cold could bring pneumonia or promote sepsis. Maybe colder isn’t always better.


There are many ways to get a perfusion injury when
oxygenation of the tissues is reestablished after hypoxia.
We talked about the free radicals (ROS) in the post. The
other injuries are a bit less obvious. We mentioned the
problems with membranes and the increase in apoptosis. 
The other two are related to spasm of the muscle cells in
the vessels which would again reduce oxygen levels, and
a nonspecific activation of coagulation and cell killing that
would lead to damage as well.
Now scientists think protective hypothermia works in a couple of different ways. Colder temperatures bring a neuroprotective effect by preventing apoptosis (programmed cell death). Less O2 means less ATP being made, and a decrease in ATP usually means that the mechanisms for maintaining proper ion movements in and out of the cell are hampered. Increased ion flux triggers apoptosis. So lower temperature brings less ion flux, less damage, and less cellular suicide.

Even a small decrease in temperature can stabilize the cell membrane independent of ATP levels. This makes sense; membranes are mostly lipid, and lower temperatures make fats stiffer – like cold butter. This will decrease ion movement across the membrane and reduce cell damage.

Lastly, decreased body temperature brings less reperfusion injury. In this case, maybe the old hypothesis was correct. Colder tissues metabolize less, so less oxygen will be needed and less ROS will be produced.

So cold is helpful, but how do you do it? You can lower the body temperature by using cooled IV fluid, cold mist in the nose, or even wrapping specific body parts in cooled blankets. But perhaps TRPV1 agonists could help cool the body from the inside.

As of early 2014, the evidence for TRPV1 agonists is only in mouse models, but it’s looking good. A study in 2011 showed the an injection of capsaicin into the abdominal cavity three hours before inducing hypoxia reduced the volume of dead tissue and the amount of apoptosis in the brains of the mice.


This is the fruit of the Evodia rutaecarpa Bentham plant. It has been
used in Chinese herbal medicine for hundreds of years. We are
starting to learn why it does what it does. It has been shown to be
an anti-cancer, anti-obesity, anti-vomiting, anti-hypertension
anti-ulcer, anti-pain drug. Five thousand years of
culture leads to good drugs like this.
Two 2013 studies added strength to the 2012 study. One experiment used a Chinese herbal medicine that contained a chemical called evodiamine. It had been known that evodiamine helped in stroke victims, but we didn’t know why. Evodiamine was shown to be a TRPV1 agonist in 2012, and the 2013 study showed that after a stroke, the agonist increased cell survival mechanisms and reduced apoptosis.

The other study from 2013 showed that capsaicin also helps in reperfusion injury. Mice were given strokes by blocking an artery in the brain and then unblocking it to replenish the blood and oxygen. Injecting capsaicin within 90 minutes of the re-establishment of blood flow produced a mild hypothermia, reduced the volume of dead tissue in the brain, and increased neural function. This didn’t occur in mice without TRPV1, so we know the capsaicin receptor was responsible. Sounds like emergency rooms are going to start stocking hot peppers.

Today we discussed interesting uses for capsaicin and its receptor in temperature-related functions. Next week, some weird functions for TRPV1 that have little or nothing to do with temperature.


Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, & Saito M (2013). Recruited brown adipose tissue as an antiobesity agent in humans. The Journal of clinical investigation, 123 (8), 3404-8 PMID: 23867622

Feng Z, Hai-Ning Y, Xiao-Man C, Zun-Chen W, Sheng-Rong S, & Das UN (2014). Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes. Nutrition (Burbank, Los Angeles County, Calif.), 30 (3), 319-25 PMID: 24296036

Yoneshiro T, & Saito M (2013). Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management. Current opinion in clinical nutrition and metabolic care, 16 (6), 625-31 PMID: 24100669

Muzzi M, Felici R, Cavone L, Gerace E, Minassi A, Appendino G, Moroni F, & Chiarugi A (2012). Ischemic neuroprotection by TRPV1 receptor-induced hypothermia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 32 (6), 978-82 PMID: 22434066

Cao Z, Balasubramanian A, & Marrelli SP (2014). Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. American journal of physiology. Regulatory, integrative and comparative physiology, 306 (2) PMID: 24305062


For more information or classroom activities, see:

Brown adipose tissue –

Protective hypothermia -



Wednesday, May 8, 2013

It’s An Airtight Case

Biology concepts – respiration, aerobe, anaerobe, CAM plants, plastron respiration, cutaneous respiration

Question of the Day – what living thing can hold its breath the longest?

It may seem like an exaggeration, but people whose
tissues are low on oxygen (hypoxic) can have a bluish
hue (cyanosis). Blood that is oxygenated is redder
than blood that is deoxygenated. In animals with more
hemoglobin than humans, like whales, the blood can
actually turn almost purple. Blue Man Group will turn
you blue - from laughter, not disease.
The world’s record for holding one’s breath (voluntarily) was set in May, 2012 by Denmark’s Stig Severinsen. Even though it wasn’t technically cheating, he did hyperventilate with almost pure oxygen for 19 minutes before he then held his breath for an amazing 22 minutes and 0 seconds!

Hyperventilation works by reducing the CO2:O2 ratio in your blood. CO2 concentration is measured by sensors in your large blood vessels. Signals are sent to the brain to increase the breathing rate if there is too much CO2 in the blood or to reduce the breathing rate if the pCO2 is too low. By breathing fast and breathing pure O2, there will be less CO2 in the blood and your brain will tell you to stop breathing until the pCO2 increases to normal levels.

Stig said he used two mental tricks to increase the time he can hold his breath. One is scientifically valid; biofeedback allows Stig to slow his own body activity. By concentrating on his heartbeat, Stig has learned to stimulate neural pathways to reduce his cardiac output and his overall metabolism rate -lower metabolism and heart rate - less need for oxygen. His second technique? He thinks about dolphins.

Twenty-two minutes seems like a long time; indeed, this feat required arduous training by Stig. In truth, 22 minutes isn’t very long at all. In fact, humans are weenies when it comes to going without oxygen. Lots of animals can hold their breath longer than we can.

Sperm whales and elephant seals are the banner carriers for the marine mammals in our contest. Sperm whales can submerge for more than two hours, while elephant seals may stay under water for an hour or more. Being mammals, they have physiology very similar to humans in some respects, but they do have modifications that allow for the long submersions.

Elephant seals have a large proboscis; hence the
elephant name. There are two species, Northern and
Southern, with the Southern species being slightly
larger. Males can weigh over 5 tons and they fight for
females. The females are more like 1500-2000 pounds,
making this the largest relative difference in weights
of two sexes for any mammal.
Whales and seals have more blood than humans do – duh! Even compared pound for pound, they have 3x as much blood. More blood means more oxygen carrying capability. They also have increased oxygen carrying proteins in their blood and tissues. In addition, they can reduce their metabolism in all but the most necessary organs, and they can divert their blood to just these organs.

New research shows that marine mammals also have oxygen carrying proteins in their brains, called neuroglobin and cytoglobin. So, while blood levels of oxygen may plummet when diving, the brain remains oxygenated.

Sea turtles and crocodilians are examples of reptiles that can hold their breath for amazing lengths of time. Aligators and crocodiles can stay submerged for a couple of hours, while a Galapagos sea turtle can easily stay underwater for 4-7 hours, depending on its level of activity. Maybe they think about Stig in order to stay submerged longer.

Sea turtle hibernation is controversial, but some freshwater turtles do just that. They can stay submerged for weeks or perhaps months at a time! But many turtles cheat at our contest, they have a bimodal respiratory system, through their lungs and through their skin. Cutaneous gas exchange is apparent in all freshwater turtles to some degree, but it is much more efficient in some soft shell turtles, according to a 2001 study.

Let’s look at a different type of reptile. The Belcher’s sea snake (Hydrophis belcheri) is the most venomous snake on the face of the Earth, or under it, as the case may be. It is a sea snake that can remain submerged for 7-8 hours. Sea snakes like H. belcheri have a single lung that runs almost the entire length of their body, and their trachea can also transfer oxygen to the blood. This reduces the “dead space” in their respiratory system and allows them to absorb more of the oxygen they inhale.

This diagram gives you an idea of how little respiratory
space humans use for gas exchange. The only places
that move oxygen in to the blood are the pinkish
alveoli at the ends of each airway. Sea snakes use
their available respiratory space to exchange gasses.
Humans, as a comparison, only absorb about 15% of the oxygen in each breath, partly because the gas exchange takes place only in the alveoli (terminal air sacs). Oxygen in the nose, pharynx, trachea, bronchi, and bronchioles is just exhaled without any chance to be used by the body.

However, sea snakes are cheaters as well. Their bodies have been streamlined to help them move through the water. One adaptation in this direction is the complete loss of scales. As a result, these snakes have evolved the ability to exchange some oxygen and carbon dioxide with the water through their skin. So they aren’t really holding their breath when submerged.

Almost all amphibians are cutaneous (skin surface) breathers as well. In air, most amphibians can survive exclusively by exchanging gasses through their skin, and in water, adult gills or rudimentary lungs are supplemented by exchange of gas from the water. Cold water and turbulent water contains more oxygen, so in these environments amphibians can survive indefinitely by garnering oxygen from water.

Indeed, the largest family of salamanders (the plethodontidae), don’t have any lungs at all. They exchange gasses only through their skin and the mucosa surfaces of their mouths. And many of these salamanders are primarily aquatic, they don’t take a breath in their entire lives – but they aren’t holding their breath either.

But none of these animals are the champion breath holders. There are organisms that laugh at holding their breath for a couple of hours. But let’s limit our discussion to those organisms that require oxygen. It’s no fun watching an anaerobic bacterium hold its breath; it doesn’t need oxygen! In many cases, air kills them!

Cockroaches, ticks, and ants do last a long time underwater, just try flushing one. But they can’t win our contest either. They seem to trap a bubble of air as they submerge. They have long hairs on their abdomens that trap air via the surface the surface tension and cohesion of water.
A plastron is the bottom portion of the turtle or tortoise shell,
made up of flat pieces. On the right is the plastron of a tick.
In some ticks there can be gas exchange from water to bug
through the plastron. This is called plastron respiration.

Surrounded by the bubble, they can oygenate their tissues via the breathing holes on the sides of their bodies (spiracles). This allows them to be underwater for nearly an hour and still be breathing. New research in ticks shows that the plastron (flat portion under the abdomen) is capable of some gas exchange itself via the air trapped by the hydrophobic hairs on the abdomen.

We make a big deal about how plants take in carbon dioxide and give off oxygen, and they do during photosynthesis in their chloroplasts. But that’s only half the story. They also have mitochondria that produce ATP from photosynthesis products via oxidative phosphorylation, just like we do.

For plants that grow in hot, dry environments, loss of water is a serious threat. To minimize water loss, some can close the pores in their leaves (stomata), but this also prevents gas exchange, including taking up carbon dioxide and oxygen. The stomata will open only at night, when the temperatures are cooler and water loss would be lost. This is the only time they exchange CO2 and O2 with the environment as well.

CAM (crassulacean acid metabolism) plants can store the carbon dioxide they take in at night in the form of malate. They then can perform photosynthesis even though their stomata are closed. CAM physiology also reduces the amount of O2 bound by RuBisCo enzyme instead of CO2. RuBisCo + O2 leads to inefficient carbon fixation, so waiting until night time when CO2 is relatively more abundant and more soluble will increase photosynthesis productivity. As a result, CAM plants hold their breath for 8-15 hours every day!

CAM plants close their stomata during the hot day, but
exchange gasses during the cooler night. They convert
carbon dioxide to malate as a temporary fixation, which
they store in the central vacuole. During the day, they
convert the malate to carbon dioxide and then to
carbohydrate in the chloroplast using normal
photosynthesis pathways. CAM plants include the
prickly pear, as shown on the extreme right and left.
But the winners of our lack of oxygen survival contest – bacteria, of course! Bacteria come in many flavors, including those that don’t need oxygen for respiration (chemosynthesizers and anaerobes), those that can take or leave oxygen (facultative bacteria), and those that must have oxygen in order to make ATP (obligate aerobes).

Mycobacterium tuberculosis is an example of an obligate aerobe. I talked to Martin Gengenbacher at the Max Planck Institute in Berlin about M. tuberculosis and its survival time without oxygen. He has recently published a great review of M.tuberculosis biology. In a series of experiments that resulted in the development of something called the Wayne model, M. tuberculosis was sealed in a vessel in which they consumed all the available oxygen over time.

However, even after the oxygen was gone, the organisms remained viable for 25 days! They do seem to go dormant, but this dormancy is not the same as ceasing activity completely. It seems that some metabolism and respiration is maintained in the complete absence of oxygen – even though we know that M. tuberculosis absolutely requires oxygen to survive.

These 25 days make M. tuberculosis better than any of our other example organisms at living without gas exchange, though there may be other obligate aerobes that can perform similar feats. But there’s more to the skills of the tuberculin bacterium. In tuberculosis, the body has a difficult time killing off the organism, so it does the next best thing – it walls off the bacteria and traps them in a prison cell of immune cells. These whirls of cells are called granulomas and are very complex structures.

On the left shows a tuberculin granuloma forming and breaking
down. You can see in the middle a formed granuloma, with
macrophages surrounded by a fibrous cuff and lymphocytes.
When immunosuppression sets in, the granuloma breaks down
and the organisms is released to cause disease. On the right is a
photomicrograph of granulomas. In the right corner is a
tuberculosis bacterium before granuloma formation.
Granulomas are extremely hypoxic (oxygen poor), and M. tuberculosis does undergo dormancy in these structures. But again, Dr. Gengenbacher states that this is a metabolically active dormancy, which would by definition require ATP, and therefore require cellular respiration.

The patient still has TB, but no symptomology. This remains the case until the patient undergoes some form of immunosuppression, some disease or condition that prevents the immune cells from keeping the organism in prison. There have been cases where TB has reactivated some 50 years after the original infection. So – M. tuberculosis can hold its breath for half a century! We have a winner.

Next week, another question to ponder. Just how many species call Earth home? 



Gengenbacher, M., & Kaufmann, S. (2012). Mycobacterium tuberculosis: success through dormancy FEMS Microbiology Reviews, 36 (3), 514-532 DOI: 10.1111/j.1574-6976.2012.00331.x  

Fielden, L., Knolhoff, L., Villarreal, S., & Ryan, P. (2011). Underwater survival in the dog tick Dermacentor variabilis (Acari:Ixodidae) Journal of Insect Physiology, 57 (1), 21-26 DOI: 10.1016/j.jinsphys.2010.08.009  

Williams, T., Zavanelli, M., Miller, M., Goldbeck, R., Morledge, M., Casper, D., Pabst, D., McLellan, W., Cantin, L., & Kliger, D. (2008). Running, swimming and diving modifies neuroprotecting globins in the mammalian brain Proceedings of the Royal Society B: Biological Sciences, 275 (1636), 751-758 DOI: 10.1098/rspb.2007.1484