The culprit, or the hero, in this eat and sleep saga is said to be the tryptophan in the turkey. Other
people think that it is simply how much you eat, not the turkey's tryptophan, but it isn’t
quite that simple. What is tryptophan, and is it
indeed responsible for the snoring that follows Thanksgiving dinner? Some background will help.
Tryptophan is an amino acid, one of the twenty standard
building blocks of proteins. Each amino acid has a similar basic structure, as
shown in the picture below. The central carbon has an amino group (NH3) on one
side and a carboxylic acid (COO-) moiety on the other; hence the name – amino
acid. The third side group is a simple hydrogen (H), while the fourth side (R)
refers to any of several different side groups and is what makes one amino acid
different from one another.
Tryptophan is an aromatic amino acid, meaning that its side
group contains a six-sided carbon ring structure (each corner represents a
carbon). It also has a second ring group of four carbons and a nitrogen. As
such, it is the largest and most massive of all the standard amino acids.
However, tryptophan is the least abundant amino acid in plant and animal
proteins; it accounts for only 1-1.5% of the total number of amino acids in
proteins.
Tryptophan’s large structure and intricate rings make it costly to produce in terms of ATP invested. In fact, it takes so much energy to make that we have stopped making tryptophan all together. Tryptophan is abundant in a number of food sources commonly available to humans, so over evolutionary time we have turned it into an essential amino acid. True, it is essential for life, but here the word “essential” means that we MUST get it from our diet, we cannot produce it ourselves.
Of the 20 standard amino acids, 10 are essential in humans
(9 that we must eat and 1 that we make from an essential amino acid), but bacteria
make them all just fine - although the parents of newborns may wish it wasn’t so. Gut bacteria make tryptophan or use the tryptophan we eat. They transform it into molecules they need to survive, but the
byproducts of these reactions are skatole and indole –
these are the precious little molecules that give dirty diapers that wonderful
smell!
Tryptophan is different from many other amino acids in
another way as well; it gets no respect from the genetic code. Each amino acid is coded for by a group of three RNA
bases, together called a codon.
Since there are four different bases in mRNAs (A, C, G, and U – remember that T
is used in DNA but not RNA), then there are 64 different codons (4 x 4 x 4).
This is more than the 20 amino acids that the codons code for, so most amino
acids have two or three codons that signals that they should be added to the
growing peptide. But tryptophan is encoded by only one codon (UGG).
It may make sense that an amino acid that is not used often
in proteins might rate only one codon, but the amino acid methionine is used much more often
than tryptophan, and it's only coded for by one codon as well (AUG). You know nature must have a reason why tryptophan has a single codon, we just don't know it yet.
It takes two enzymes to turn tryptophan into serotonin (also
called 5-HT). First is tryptophan
hydroxylase; hydroxylase means it splits water, here it adds an OH to tryptophan. Next, the amino acid decarboxylase removes a carboxylic acid (COOH), producing serotonin.
Amongst the many functions of serotonin are a few that are
not brain related. Serotonin is released by enterochromaffin cells
that line your gut to tell your gut to move. The movement helps push the food
along your digestive tract, but serves a protective function.
If you eat something toxic, the enterochromaffin cells
produce more serotonin – your gut moves much faster, and you get diarrhea. If
even more serotonin is made and released, it moves through the bloodstream to your
stomach and esophagus and causes you to vomit.
But it is in the CNS that serotonin has its significant
activities. As a neurotransmitter, it is responsible for controlling how
electric messages are passed from one neuron to another. When serotonin is
released in the synapse (the gap
between the upstream and downstream neurons) and is taken up by adjacent
neurons, it produces a sense of well-being.
Unfortunate, but interesting, is the study showing that the suicidal thoughts that
sometimes accompany anti-depressant therapies (TESI – treatment enhances
suicidal ideation) use may be related to polymorphisms in one form of the
tryptophan hydroxylase enzyme that starts the serotonin production from
tryptophan.
When non-suicidal patients were compared to those with TESI or those who were suicidal without treatment, a
pattern emerged. Only those with TESI showed a polymorphism pattern in the tryptophan
hydroxlyase 2 (TPH2) gene. This polymorphism had previously been associated
with suicide victims and major depressive disorder. It seems that a slight
alteration in function of TPH2 due to a single nucleotide change can contribute
to the genetic background of treatment induced suicidal thoughts.
The feeling of general well being induced by serotonin also
participates in the sleep/wake cycle. So is tryptophan – through serotonin –
responsible for the post-Thanksgiving nap? Well… yes and no, it's an
accomplice in a larger conspiracy.
Serotonin is use to produce the hormone melatonin, and
melatonin promotes sleep, so you could say turkey dinner promotes sleep. But
turkey doesn’t have that much tryptophan! Tofu has much more tryptophan than
turkey, but you don’t get a post-Chinese takeout urge to sleep, so what gives?
The brain takes in amino acids through a neutral amino acid
transporter, which now finds more tryptophan than other neutral amino acids, so
the brain level of tryptophan goes up. More tryptophan in the brain, more
serotonin – more serotonin, more melatonin. More melatonin = nap time! So if
you want to avoid the post-Thanksgiving nap, eat the turkey and skip the mashed
potatoes.
You didn’t know how much tryptophan controlled your daily
life, did you? Well, there’s more. Tryptophan is also important in synthesizing niacin, a.k.a. vitamin B3 or nicotinic acid. Niacin is important in production
of NAD/NADH for energy metabolism, for production of steroid hormones and
balance of lipid forms in the blood, and as an anti-convulsant.
The tryptophan-niacin connection is made stronger by recent
evidence that high dietary tryptophan can prevent epileptic seizures in mice. In this study, a whey
protein called alpha-lactoalbumin (ALAC) was found to have much tryptophan,
much higher levels than in most proteins. Feeding epileptic mice ALAC resulted
in reduced numbers of seizures.
So even if you don’t want to sleep or think happy thoughts,
you still need to eat food that contain tryptophan or niacin. And many of those
foods are plants, because plants use tryptophan to control their own
activities. Tryptophan is easily converted to auxins, a type of plant hormone. Auxins are responsible for several
different plant behaviors, namely the falling leaves in autumn and ripe fruits
all year long.
More amazingly, studies in the 1970’s to 1990’s suggest that low tryptophan levels
can lead to increases in religious fanaticism. Several studies from a single
author correlate the Aztec human sacrificial ceremonies to the times of year
when their diets depended more on foods that had less tryptophan. Think of all
the lives that could have been saved by tofu!
But turkey is more than just tryptophan. You have to love an
animal that has caruncles, a wattle, and a snood! What's a snood? Come back next week.
For
more information or classroom activities, see:
Genetic
code –
Neurotransmitters
–
http://science.education.nih.gov/supplements/nih2/addiction/activities/lesson2_neurotransmission.htm
http://science.education.nih.gov/supplements/nih2/addiction/activities/activities_toc.htm
Would just like to point out that Met is coded for by the start codon AUG, not AGU.
ReplyDeleteGood article!
Sorry for the typo, it has been fixed. Thanks for reading.
Deletesolarmovie
ReplyDeletevery amazing article.for more information click the link.
Gracias por compartir este excelente artículo de blog. Seguir escribiendo.
ReplyDelete