Showing posts with label flagella. Show all posts
Showing posts with label flagella. Show all posts

Wednesday, January 14, 2015

Everybody In The Gene Pool - Plants That Swim

Biology concepts – botany, taxonomy, alternation of generations, cycad, gametophyte, sporophyte, gametes, motility, ginkgo, archegonium, antheridium


In the LOTR The Two Towers we find the tree herders
that can move on their own despite being plants. Today’s
exception is a version of this, if on a much smaller scale.
There are a few types of trees that have motile parts; they
don’t rely on wind, gravity, insects or anything else to
move from one place to another.
Plants are divided up into many categories, and few people agree completely on the groupings. I’ve got a new grouping – swimming plants versus non-swimming plants! It’s as good as anyone else has come up with – let’s investigate the plants that can move on their own.

Plants are most often called by their binomial system names (genus, species), but this is just naming, not categorizing in a large way. Animals, protists, fungi, etc. are all divided into different phyla based on their similarities ad differences. But for some reason (I hope there’s a reason) botany uses divisions instead of phyla.

There are 10-12 divisions of plants (we’ll use 10), covering everything from the mosses to the flowers. Compare that to 21 phyla of animals and it seems like the plants will be easier to classify – but not so fast.

Group plants according to various characteristics and you start to muddy the waters. You might divide them up according to whether they have vascular tissue or not. Non-vascular plants are short because they don’t have vessels to move water very high – these are the Anthocerotophyta (hornworts), the Bryophyta (mosses), and the Marchantiophyta (liverworts). Together they are called the Bryophytes.

The vascular plants are all seven of the other divisions – the Lycopodiophyta (the spikemosses and clubmosses), Pteridophyta (ferns and horsetails), Coniferophyta (conifers), Cycadophyta (cycads), Ginkgophyta (just one species, Ginkgo biloba), the Gnetophyta (a weird group), and Angiospermae (flowering plants).  The conifers, cycads, ginkgo and gnetophytes are often grouped together as the gymnosperms – you’ve probably heard of them.

On the other hand, you might divide the plants up into the seed plants and non-seed plants. In that case, you lump the club mosses and the ferns with the bryophytes, since they all reproduce using spores, not seeds.


Every plant alternates between versions of itself that are
diploid (sporophyte) and haploid (gametophyte). Different
types of plants spend different amounts of time as one or
the other. Mosses and other bryophytes are almost always
in their gametophyte state, while trees are sporophytes with
microgametophytes (antheridium and archegonium) located
in their flowers only.
Lest you think that all those divisions that are seed plants are the same, you can divide them all differently based on whether their seeds are naked (the gymnosperms) or those with fruit (parts of the ovary or accessory organs that overgrow – all in the angiosperms).  Or you could divide them on the basis of how many leaves the embryonic plants have; monocots have one while dicots have two. Angiosperms play by these rules, but gymnosperm seeds don’t, their embryos may have none, one, two, or dozens of cotyledons (embryonic leaves).

Here’s one classification method you may not have heard before – gametophyte dominant vs. sporophyte dominant plants. This has to do with the cycle of life of plants.

Every plant has two lives. Part of its life is spent as a haploid gametophyte (produces haploid gametes) while another plant of the species is a diploid sporophyte.  The sporophyte produces spores that grow into the gametophyte, then the gametophyte produces gametes that join together during fertilization to become a new sporophyte.

Some plant types (like bryophytes) exist mostly in the gametophyte stage and are therefore called gametophyte dominant. Other plants (like trees and flowers) spend all there time as sporophytes and only small parts of them become gametophytes (like pollen or cones).

One way you shouldn’t classify plants is based on their movement. Sure, some plants can grow in a certain direction, toward or away from some stimulus (tropisms, see this post), but plants aren’t motile. They don’t pick up and move themselves from one place to another under their own power.


The Himalayan Balsam is an invasive viny flower that has
become a problem in Europe and is invading the US as well.
Their seed pods contain fins under great strain when fill
with water. The slightest provocation will cause them to
explode, sending seeds more than 25 ft (7.5 m).
Plants also have many ways of moving their seeds and this is sort of a way of plants moving, but I think it’s cheating a bit. Seed dispersal mechanisms can rely on the wind (maples, dandelions) or water (cranberries, coconuts). They can use animals that eat them (many), or just grab ride on them (devil’s claws), or they can burst out (peas) or be shaken out (poppies) and use gravity. But this isn’t really a plant moving by it’s own power.

Plants disperse seeds as new plants, but they also disperse their male gametes in order to find the egg on another plant of their species. You have to get the pollen of seed plants (containing male gametes) or the male gametes themselves to the egg. Like seeds, pollen grains can be moved by insect, by wind, by rain, etc. These are the ways most plants get their male gametes to the egg in order to create a new plant, either in a seed or without a seed.

But there are exceptions, and this is weird exception. Some plants have male gametes that are motile. They swim to the egg! No big deal for animals, they pretty much all have motile male gametes (we’ll look at the exceptions to that), but it’s quite the stunner in plants.


Who knew SpongeBob cartoons were science lesson. Plankton
is green, a phytoplankton – an algae to be precise. Those two
antennae? Probably his two flagella, the way he would swim
around. The feet and the single eye-not so scientific.
Algae are probably the ancestors of all land plants, and we know their gametes have flagella for swimming from our post on them. But some land plants retain this method of male gamete dispersal, but they do include some weird twists. The plants that have motile male gametes cross many of the classes that we described above. There are some seed plants and some spore plants, some vascular and some non-vascular, some are gametophyte dominant and a few are sporophyte dominant – but no flowering plants do this.

Bryophyte males gametes are swimmers. The mosses, liverworts and hornworts  live close to the ground and must have standing water for the make gamete to reach the female gametophyte and egg. The haploid gametophytes are the moss that we usually see. The antheridium grow on the top of the male plants to produce male gametes, while the archegonium on the female plant tip produces the ovule with the egg. When the water is high enough the antheridium releases the male gametes and they swim to the egg using two flagella. The sporophyte (diploid) plant grows from the top of the female gametophyte.

Ferns, horsetails, and club mosses are taller than mosses because they are vascular, but they still require water for their male gametes to swim to the egg. The gametpophyte is a heart shaped leaf that lies near the ground. At one spot the archegonium grows the egg, while the male gametes in the antheridium grow nearby. Water resting on the leaf allows the male gametes to swim across the leaf to the egg (or from leaf to leaf). The sporophyte grows from the heart-shaped gametophyte and is the fern we usually think of.


Cycads (left) are gymnosperms whose trunk are formed from
the bases of the leaves as they grow and are lost. There are
about 300 species of cycads known, with several added every
year. The Ginkgo biloba is the only extant species of the
division. Because its wood is insect resistant, some trees may
be over 2500 years old.
Angiosperms and other seed plants use pollen to send the male gametes to the ovule. When the pollen reaches the archegonium, a tube grows into the ovule and to the egg. The male gamete cells are carried along by the pollen tube right to the front door of the egg. This is when fertilization occurs.  But not all seed plants work this way. A few of the gymnosperms still use a modified version of swimming to the egg.

Cycads (about 300 species) and the lone extant ginkgo, Ginkgo biloba, do have pollen grains that represent the male gametophyte plant. They get blow or carried to the female gametophyte cone and then it gets weird.

The ovule produces a drop of liquid that sticks into the air. The pollen gets caught in this drop and then the drop and the pollen are pulled back into the ovule. The pollen tube grows into the female reproductive organ, but not right to the egg. When the pollen tube reaches the entrance of the archegonium, it ruptures and the gametes are released into a watery fluid that surrounds the eggs.


Cycad and ginkgo male gametes move on their own, the only
exceptions in the seed plants. They have hundreds to thousands
of cilia, as opposed to flagella in bryophyte gametes, which
pull the cell forward. Ginkgo male gametes are huge (0.3 mm),
larger than an entire Wolffia globosa plant.
The male gametes have about a thousand of cilia (not flagella) that pull the cell through the watery environment inside the ovule toward the egg. Fusion and fertilization occurs when the male gametes find the egg – as always. The cycad and ginkgo male gametes swim, but they swim in the indoor pool, not out in the old swimmin’ hole like the bryophytes.

The male gametes of cycads and ferns are very different, from where they swim, to their relative sizes – ginkgo male gametes are HUGE compared to those of ferns, to the use of thousands of cilia as opposed to a couple of flagella.  However, research shows that they are remarkable similar in structure and function.

A 2006 study looked at the proteins involved in gamete movement in ferns and ginkgo. Their results indicated that most of the proteins in both were homologous enough that it suggested a direct descent from bryophyte to gymnosperm, not a case of parallel evolution.


In Guam, there is a neurologic disease that looks a lot like
Alzheimer’s. Research in 2004 found that it was actually
coming from cycad trees. Here’s how it happens. Cyanobacteria
live in the tree roots and put the toxin BMAA into the tree
tissues. Bats eat the fruits and people eat the bats. Than BMAA in
the brain causes disease.
One more cycad exception while we’re here. The cycads can do something that I thought was reserved only for philodendrons and a few relatives. These thermogenic plants can raise the temperature of their male cones by several degrees when the pollen is mature. A 2013 study showed that they can raise the temperature of male cones 2-15 degrees above ambient temperature.

This is believed to attract more insects as pollen distributors, and the researchers did find that more insects visited the plant when the temperature was increased. The mechanism may involve volatilizing more attracting chemicals though the added heat, which would then attract more pollinators (usually weevils).  Pretty advanced for a plant with a so-called primitive reproduction mechanism.

Next week – the base of the undulipodia has a special story all its own. Is it another instance of bacteria evolving into one of our organelles? And it has two very different jobs – which came first?



Suinyuy, T., Donaldson, J., & Johnson, S. (2013). Patterns of odour emission, thermogenesis and pollinator activity in cones of an African cycad: what mechanisms apply? Annals of Botany, 112 (5), 891-902 DOI: 10.1093/aob/mct159

Vaughn, K., & Renzaglia, K. (2006). Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus Protoplasma, 227 (2-4), 165-173 DOI: 10.1007/s00709-005-0141-3

Murch, S., Cox, P., & Banack, S. (2004). A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam Proceedings of the National Academy of Sciences, 101 (33), 12228-12231 DOI: 10.1073/pnas.0404926101


For more information or classroom activities, see:

Alternation of generations –

Seed dispersal –

Pollen –

Cycads –

Ginkgo biloba –

Wednesday, January 7, 2015

The Fungus And The Frog

Biology concepts – common descent, evolution, direct descent, fungi, undulipodia, amphibians, phylogenetics

THIS IS NOT HOW EVOLUTION OCCURS!! What this
animation implies is that one type of animal became
another type of animal. It shows a chimp becoming a
human. If so, how come there are still chimps? This
suggests direct descent with adaptation and this is a
fallacy. What is correct is that the animals shown did all
share a common ancestor at some point.

The first life on Earth is a mystery to us. Our best guess right now states that whatever it was, it showed up about 3.5-3.7 billion years ago. It was a cell, let’s call him Luca (last universal common ancestor). Luca had DNA, or maybe just RNA. He had ways to harness and use energy for his purposes, to adapt to changes in his environment, and to reproduce. Luca possessed all seven of the characteristics of life.  

Every living thing you see around you, and all the living things you can’t see around you, are descended from Luca. But here is the part that’s a little harder to understand – it hasn’t been a straight line from Luca through all other life forms to you.

It’s the difference between common descent and direct descent. Just because humans and pine trees have a common ancestor, it doesn’t mean that we are direct descendents of the same organism.

At some point, about 3.5 billion years ago, archaeal prokaryotes were recognizable. Luca gave rise to archaea and also to bacteria, but we can’t say that bacteria descended directly from archaea. There are as many differences between archaea and bacteria as there are between you and a pine tree, maybe more. All we can say is that they diverged from a common ancestor, which is why they have some common characteristics (from a common ancestor), and many different characteristics (because they diverged).


This is a much better representation of evolution
through common descent and adaptation. We may not
know what exact organism was the last common ancestor
between any two branches since only the fossil record only
represents about 1% of species that lived.
Bacteria were, and are, just about perfect organisms. They were bacteria then, and they are bacteria now - why mess with perfection. They have diverged into many types of bacteria, and those types are diverging even today, but they have stayed as bacteria.

Archaea, as opposed to bacteria, diverged again and again, giving rise to the rest of the kingdoms we know today – protists, plants, fungi, and animals. The question is, why did they diverge so much, while bacteria stayed so much the same?

I don’t know the answer, but a good theory is the development of organelles. We have talked before about how an archaea swallowed a bacteria, but didn’t destroy it, and how that the eukaroytic nucleus. Another instance in this endosymbiosis theory formed the mitochondrion. The more complex something is, the more chance for it to respond to changes in the environment – more adaptation could have led to more divergence.

Through billions of years of struggle and adaptation, the eukaryotic kingdoms emerged – but again, you can’t say that one descended directly from another. Contrast evolution to the alphabet. C follows B, which follows A. Humans like to think linearly. But consider that there may be millions of A’s. Must they all become B’s and then C’s?

No, millions of A’s may breed and remain A’s over the years, while what became a B breeds and stays a B. Maybe later on a couple of A’s breed and have a little baby that looks like neither an A nor a B. Now we have C. B and C or both diverged from A, but B and C are different from one another. They are linked by common, but not direct, descent.


This is a phylogenetic map of the life on Earth. Notice that
we don’t know just what the last common ancestor was, but
you see that eukaryotes diverged from archaea and that
animals, plants, and fungi diverged from protists
(microsporidia, flagellates, ciliates, slime molds) rather
recently. Trees may look a bit different based on what DNA
target gene is being compared.
Scientists use changes in DNA over time to track just when two lines of organisms diverged from their last common ancestor. They can plot this out by time and distance, forming a diagram. This is the study of phylogeny (from Greek phylos = race, and genesis = birth of) and its tools are phylogenetics. Because the diagrams can look like trees, with the common ancestor as the base of the trunk, they are called phylogenetic trees.

A long time ago, a few archaeal descendents had diverged enough to be called protists. They were eukaryotic now, with organelles and special functions, and were starting to think about working together as multicellular organisms. The protists of that time were direct descendents of archaea, but the different protists we know today (see our last few posts here, here, and here) aren’t necessarily directly descended from one another or even from the same archaea.

Some protists diverged from one another. Many stayed as protists, even though they might have evolved to different orders or families over the years. However, others became animals, fungi, or the plants. Our last common ancestor with plants was a protist of some sort, so we have a common ancestor with a pine tree, we just can’t draw a direct line through humans and a pine tree to get to that ancestor.

Let’s use undulipodia (eukaryotic flagella and cilia) to illustrate, or confuse, the situation. We saw that protists – most all of the different protists, use flagella or cilia in one or several ways. Flagella and cilia are characteristics that have been retained in the various descendents of archaea…. But didn’t we also say that prokaryotic flagella and eukaryotic undulopdia are completely different in structure and genes? Yes we did - so what gives.


This is a typical fungus that someone might think of. This is the
basidiomycete mushroom, Phallus indusiatus. Fungi can range
from single cell yeasts (yeah beer!) to hyphal forms that make
your tongue fuzzy, to mushrooms that can take up thousands of
acres. By the way, in New Guinea they worship P. indusiatus as
sacred and that lacy web is called an indusium.
The archaea that diverged to become eukaryotes lost their flagella at some point, and then very quickly evolved them right back again. The structure of the new flagella were different; made from different proteins and having a different structure, but they did about the same job(s).  This re-evolving of a flagellum (and cilium) must have occurred pretty quickly, because all the kingdoms that descended from those early eukaryotes (protists, plants, fungi, animals) have them to some degree or another.

Yet, if you look for undulipodia in the fungal species on Earth today, you’ll find them in only one of the five phyla. Again, what gives? Didn’t we just say that fungi descended from undulipodia containing ancestors?

Four of the phylums of fungus are grouped by characteristics, both genetic and life cycle – the Chytridiomycetes, the Zygomycetes, the Ascomycetes and the Basidiomycetes. The fifth phylum is called the imperfect fungi because we haven’t found a life cycle in them that we can place into one of the other four phyla. But when we do, as we have for some individuals imperfect fungi, they usually fall into the ascomycete or basidiomycete phylum.

However, only chytrid fungi have flagella. Every species in every other phylum of fungi has lost their undulipodia. If you are thinking in terms of phylogenetics – what does this suggest to you?

Yes, very good – the chytrids are probably the common ancestor for all the other fungi. Those that didn’t diverge enough and stayed chytrids retained their undulipodia, but at some point, others lost their flagella and kept on changing into all the other phyla of fungi over time.


Here is a phylogenetic tree of the fungi, showing that flagella
were lost after the other phyla diverged from the
Chytridiomycetes. On the bottom right is a microscopic image
of the mature sporangium of a chytrid fungus. The
zoospores are inside the sporangium. The dark filaments are
rhizobia, not flagella.
You could do the genetics studies to find out which phylum diverged first, and then which one diverged from that and so on, but it would be a waste of time – it’s already been done. The picture to the right shows the phylogenetic tree for four of the phyla of fungi (minus the bothersome imperfect fungi).

What is so different about the chytrids that they kept their flagella, while the others were suited to live without them? There must be something about the chytrids life cycle and/or environment that required the retention of their eukaryotic flagella. Well, they all live in water, maybe they need flagella to swim around. But look at the picture of the chytrid on the right, I don’t see a flagellum anywhere there.

The chytridiomycete name comes from the Greek chytridion, which means little pot.  The pot holds all their zoospores, their reproductive form. It is the zoospores that have the flagella, so they can swim away and establish themselves somewhere with less competition. But that isn’t a good enough explanation. Many water borne fungi come from the basidiomycete or ascomycete phyla, and they don’t have flagella in any of their life cycle stages. Hmmm.

We have tens of thousands of extant (living today) fungal species, and only about 750 or so have any undulipodia. This makes the chytrids exceptional, and is directly related to their being the common ancestor for all the other fungi. If undulipodia are so important that animals, protists, some fungi, and even some plants have them, then why is it that so many fungi seem to get along fine without them? Maybe they’re the exception.

Let’s tell one story of how the chytrid flagella are important. A species of chytrid, called Batrachochytrium dendrobatidis, is responsible for perhaps the largest vertebrate mass extinction in the history of the Earth - and it's going on right now. Most chytrids are sabrophyitc, meaning they eat dead tissue, but a few are parasitic, mostly on plants.


Although the chytrid infection is a large reason for amphibian
collapse, there are others. Mutagens in pollution are responsible
frogs with extra or missing limbs. You can imagine how that
might interfere with long life and mating. It turns out that
amphibians, being in and out of water, are especially vulnerable
to environmental changes.
B. dendrobatidis, on the other hand, is the only known chytrid parasite of living animals - amphibians specifically. The fungi embed themselves in the keratinized skin of amphibians that find themselves in chytrid-contaminated water and then proceed to digest their skin. As many as 6000 species may be vulnerable to this fungus, and several hundred have gone extinct because of it.

You may have heard of the frightening loss of amphibian diversity on the past decades. The reasons for this are known to be several, including toxic pollutants, climate change, and habitat destruction. But B. dendrobatidis has played a significant role as well. Fortunately, a 2011 study showed that a water flea has a voracious appetite for our frog foe and might be used as a control measure. Unfortunately, a 2013 study showed that chytrid-susceptible amphibians may be succumbing to at least two different, and probably more, species of Batrachohytria. So the problem is probably more complex than we thought.

And yes, you read correctly a couple of paragraphs above. Some plants have cells that have flagella. There are moving plants cells! Those will be our exceptions for next week.




Martel, A., Spitzen-van der Sluijs, A., Blooi, M., Bert, W., Ducatelle, R., Fisher, M., Woeltjes, A., Bosman, W., Chiers, K., Bossuyt, F., & Pasmans, F. (2013). Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians Proceedings of the National Academy of Sciences, 110 (38), 15325-15329 DOI: 10.1073/pnas.1307356110

Buck, J., Truong, L., & Blaustein, A. (2011). Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus? Biodiversity and Conservation, 20 (14), 3549-3553 DOI: 10.1007/s10531-011-0147-4




For more information or classroom activities, see:

Common descent –

Fungi –

Amphibian collapse –

Phylogenetics –