Showing posts with label physiology. Show all posts
Showing posts with label physiology. Show all posts

Wednesday, January 6, 2016

It’s An Exercise Resolution

Biology concepts – exercise, stress, aging, mood, neurotransmitters, monoamines, endocannabinoids, endorphins, blood brain barrier


Exercise is a common New Year’s resolution. You want to
test yourself and gain in body and soul what comes from
accomplishing physical tasks. However, there is such a
thing as biting off more than you can chew. Make small
goals and add length and intensity slowly, so you can
always feel you are improving.
It’s New Year’s resolution time! Last year we talked about how difficult your brain makes it to change a habit and we gave you some strategies to help you succeed. But succeed at what? It’s time to decide on a resolution.

Two of the most popular resolutions are to lose weight and to exercise more. These two can be linked, although they don’t have to be – you could just starve yourself. I don’t think anyone should make a resolution to starve this year, so let’s look in more depth at exercise as a good habit.

There are two major questions to be answered as to a “getting fit” resolution. The first is obvious – why would more exercise be good for me? We all know about how expending more energy than you take in will help you control your weight. So that’s an easy one.

Exercise also helps your health by building muscle, improving flexibility, increasing bone density, and improving both cardiac and pulmonary function. All these changes result in reduced susceptibility to diseases, especially diseases of life style, like diabetes, cardiovascular disease, cancer, and metabolic syndrome.

Those benefits were obvious, but you probably know so more. Exercise may hurt – but it also makes you feel good. Intense physical activity is a powerful mood enhancer, while at the same time reducing the effects of stress on your body. We all know folks who go for a run or go lift when they are stressed. It really does work.

Linked to de-stressing you in the short term is exercise’s effect on reducing the results of stress long term. This kind of stress means time, oxidation, wear and tear, as well as mental stress – basically, aging. Even at a cellular level, exercise may work to impede the signs of aging.

A 2010 study divided stressed women into two groups, those that began exercising and those that did not. After just a three-day exercise period, the population that began exercising showed fewer signs of aging in sample cells taken. Maybe wearing yourself out will let you wear yourself out for many more years.

People, well most people, are happier after they exercise.
Stress relief is a major contributor, I recommend that
anytime things are getting on your nerves, go out for a
brisk walk or get on your bike. The sense of
accomplishment also contributes to making you happier,
but there is so much more.

Unrelated to simply wearing you out, physical activity improves your sleep. This is so true that doctors now prescribe exercise to those suffering from insomnia. We’ll talk more about this in a couple of weeks.

The benefit you may not think of is …….thinking. Exercise actually improves cognitive (from Latin = to know or recognize) function and memory. Your brain may not be a muscle, but it definitely benefits from increasing your physical activity. This will be our subject for next week, just in time for the all the kids to have a new weapon in their arsenal for good grades.

Now for the second question about exercise, and it’s a doozie. How does exercise accomplish all these wonderful things? The effects of exercise on your physical body comes mostly from your innate ability to react to stressors. More work required from muscles results in muscles growing bigger and stronger to meet the demand. This includes your heart –it’s a muscle. No, for these biology stories, let’s focus on the mechanisms at work that affords exercise the ability to affect your brain. It’ll blow your mind.

Today let’s talk about how exercise actually makes your brain – and the rest of you, happier.


The monoamines dopamine and serotonin are intimately
involved in several mental disorders. You can see that
decreases in one lead to different problems than losses of
the other, but when they are both down, you get
depression and a will to eat more. Eating is another, not
so healthy, way of feeling happier.
The major players are neurotransmitters (NTs) and other molecules that can alter brain activity. Things like dopamine, serotonin, and norepinephrine are NTs; endocannabinoids and endorphins work to block negative inputs.

Levels of dopamine, serotonin and sometimes norepinephrine neurotransmitter are reduced in many patients with clinical depression. Each of these NTs is produced from single aromatic (meaning they have a ring structure) amino acids. Serotonin is produced from tryptophan, dopamine is produced from tyrosine, and norepinephrine is made from dopamine.

As such, they are called monoamines (mono = one and amine = amino group from an amino acid). They react with millions of brain cells to induce feelings of happiness and well-being. Having too little leads to depression or other psychiatric problems.

Depression is often treated with drugs called monoamine oxidase inhibitors, since the enzyme monoamine oxidase is responsible for degrading the monoamine NTs once they have been released from neuron to stimulate the next neuron. Less degradation means more activity, so using these drugs is like increasing the serotonin, dopamine, and norepinephrine levels in the brain.

Exercise increases serotonin in the brain, so you feel better about the world and your place in it. The increased brain serotonin may come from blood, a single study showed a decrease in blood serotonin after exercise. On the other hand, maybe exercise increases production of serotonin in the brain. Maybe it’s both.

Dopamine isn’t left out when it comes to exercise. Physical activity increases calcium (Ca2+) flow to brain, which is necessary for dopamine production. But just as serotonin can be increased in more than one way, so can dopamine activity. Published results show that moderate exercise increases the number of dopamine receptors on neurons, so more good feeling is possible.

So dopamine and serotonin are increased by exercise and make you happy. How about just decreasing any signals that make you less happy? This is the second major effect of exercise; it decreases pain and stress. This occurs through release of two other types of compounds – endocannabinoids and endorphins.


Cancer and AIDS lead to a wasting syndrome call cachexia.
Here is Robin Gibb after he was diagnosed with advanced
liver cancer. There is loss of fat and muscle as the body
tries to burn anything for fuel. These diseases destroy
appetite and mood, so cannabinoids (marijuana) can be
prescribed to elevate both. Exercise would also help by
stimulating endocannabinoids.
Endocannabionoids such as anandamide (AEA) and 2-arachidonoylglycerol (2-GT) are made from arachidonic acid; they are eicosanoid lipids, and are still another function of the lipids. Endocannabinoids are very similar to phytocannabionoids in cannabis (marijuana); they both act on the same receptors to increase appetite, elevate mood, increase immune activity, and decrease memory. This is why cannabis is used for MS and cancer patients.

A study from 2011 shows that blood endocannabinoids, especially AEA, go up after intense exercise. This increase stimulates production of brain derived neutrophic factor (BDNF) in the brain. BDNF and serotonin have a reciprocal effect; each raises the level of the other (see picture below). BDNF also stimulates neurogenesis (more on this in 2 weeks) which can be important in mood, since 50% of female depressives are seen to have a smaller than normal hypothalamus. The effect of AEA after exercise on long term mood and outlook takes just long enough for neurogenesis to begin.

Endocannabinoids also reduce nociceptive (noci = unpleasant) inputs, so your pain tolerance goes up with exercise. A 2013 study showed that exercise-induced increases in endocannabinoids increased rats tolerance for nociceptive stimuli, either by mechanical means or through heat. This is similar to how endorphins mimic opioids (like morphine) to create analgesia.


Brain derived neurotropic factor (BDNF) plays a central role
in depression. With increased stress you get more cortisol (a
glucocrticoid) which drives down BDNF and this increases
neuron die back and loss. This is why some people have a
reduced hypothalamus during depression. On the right, you
can see the loop by which increased BDNF drives serotonin
production and serotonin then drives BDNF production. Your
brain wants you to be happy.

Endorphins (endo = internal, and orphine is from morphine) are produced in the pituitary and released into the bloodstream. They interact with opioid receptors on neurons to induce analgesia (an = no, and gesia = feeling), just like morphine. Endorphins are released in times of stress or pain in body – you know, like when you try running a few miles.

Together, endocannabinoids and endorphins reduce pain and this improves mood. Runner’s high, that feeling of euphoria that is supposed to come from long intense exercise, is reported to come from endorphin release after glycogen stores have been depleted (out of immediate energy). However, the high, if you ever feel it, might actually come from reducing the stress and pain inputs. In this environment, the increased serotonin and dopamine can have bigger "be happy" effects.

This is all a great theory, but there’s one problem. The blood brain barrier (BBB) doesn’t let much of what’s in the blood into the brain. In most of the body, the junctions between the cells that make of the blood vessels are a little leaky. Many large and electrically charged molecules can get through them into the tissue. This would be bad for the brain, since many bad molecules can be in the blood as well, toxins and such. The BBB is an evolution-produced guard for our big brain.


The blood brain barrier keeps potentially damaging
molecules out of the brain tissue. On the left you see a
typical vessel, with loose junctions between the
endothelial cells that line the vessel. On the right is a
vessel in the brain. It has tight junctions to greatly reduce
the passage of molecules, and is surrounded by the ends
of astrocytes (helper cells in the brain) which also
provide another layer of protection. The only way
anything of size is getting through is to have a
dedicated transporter.
The BBB comes from the physical connections between blood vessel cells being very tight (hence the name tight junctions). Basically, unless you are small and can simply diffuse through the endothelial cells or you have a specific transporter – you ain’t gettin’ in.

How could serotonin endocannabinoids or endorphins in the blood, or calcium for dopamine production have effects on your brain if they can’t get in?

There are two answers. 1) Endocannabinoids and endorphins have some of their effects outside the brain. There are receptors for them in the peripheral system, where the painful stimuli might occur. This would work well for preventing pain and noxious stimulus inputs from getting to the brains.


Bikram hot yoga takes you through many poses for
stretching and stress relief. The sessions take place in a
105˚F room that is also humidified. You sweat like a
dog, if dogs sweat a lot. This increased heat may help
loosen the blood brain barrier so mood altering
molecules can enter, but the vast majority of mood
enhancement takes intense cardiovascular activity,
something not provided by the average yoga class.
2) It seems that exercise temporarily increases the permeability of the BBB, so serotonin from blood, Ca, endocannabinoids, endorphins, even blood levels of BDNF can get to the brain and help you be happy. As proof, a brain protein was found in the blood after exercise in a 2013 study, indicating the BBB was disrupted.

The increased permeability may come from exercise-stimulates angiogenesis (angio = blood vessel, and genesis = birth). New blood vessels are built, but new vessels are leakier. It may also be that exercise produces heat, and studies have shown that heat in the brain makes the BBB leakier. This may be why hot yoga participants seem so happy afterward – ask them ‘cause I’m not trying it.

Next week, how exercise helps you to sleep better. And it isn’t from just wearing you out. Believe it or not, your immune system is involved!



For a good resource on the structures of the brain, see Open College's Interactive Brain map.


Galdino G, Romero TR, Silva JF, Aguiar DC, de Paula AM, Cruz JS, Parrella C, Piscitelli F, Duarte ID, Di Marzo V, & Perez AC (2013). The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology, 77C, 313-324 PMID: 24148812

Koh SX, & Lee JK (2013). S100B as a Marker for Brain Damage and Blood-Brain Barrier Disruption Following Exercise. Sports medicine (Auckland, N.Z.) PMID: 24194479

Heyman E, Gamelin FX, Goekint M, Piscitelli F, Roelands B, Leclair E, Di Marzo V, & Meeusen R (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. Psychoneuroendocrinology, 37 (6), 844-51 PMID: 22029953

Vučković MG, Li Q, Fisher B, Nacca A, Leahy RM, Walsh JP, Mukherjee J, Williams C, Jakowec MW, Petzinger GM. (2010). Exercise elevates dopamine D2 receptor in a mouse model of Parkinson's disease: in vivo imaging with [¹⁸F]fallypride. Movement Disorders, 25 (16), 2777-2784 DOI: 10.1002/mds.23407

Puterman E, Lin J, Blackburn E, O'Donovan A, Adler N, & Epel E (2010). The power of exercise: buffering the effect of chronic stress on telomere length. PloS one, 5 (5) PMID: 20520771


 
For more information or classroom activities, see:

Monoamine neurotransmitters –

Exercise and mood –

Blood brain barrier –

Endocannabinoids –

Endorphins -


Wednesday, July 1, 2015

Thinking Asymmetrically About Hormones

Biology concepts – neuroendocrine system, bilateral asymmetry, internal asymmetry, hormones, endocrine glands



Jack Nicholson did some try asymmetric thinking
in The Shining. The fact that he was driven insane
by the ghost of a horrid past shouldn’t think less of
his accomplishments. Predicting that Shelly Duvall
would go for the radio – brilliant. Sneaking up on
Scatman Crothers – inspired. Following the boy
into the maze –oops.
Independent thinking; thinking outside the box; free thinking; lateral thinking; these are all terms for trying to come up with answers to problems through rejection of established logical methodologies. In today’s business, military and political worlds, they like to call it asymmetric thinking.

An asymmetric military engagement might be one where a traditional force is thwarted and confused by a nontraditional force of computer geeks hacking their communications and selling all their weapons on Etsy. Asymmetric thinking approaches what might be a traditional question at a creative angle, rejecting the tools and assumptions that are normally found “inside the box.”

Asymmetric thinking asks why outrageous solutions aren’t being considered. Many job interviews now include asymmetric thinking questions. A man goes into a restaurant and asks for a glass of water. The waiter points a gun at him and the man thanks the waiter and leaves. What’s your explanation for that? (see end of post)

Today we'll talk about asymmetric thinking in a different way – a lateral thinking approach to asymmetrical thinking, as it were. We have talked about the asymmetry of the brain hemispheres and how they sit asymmetrically in your skull. We have also talked about the neuroendocrine system and how it is controlled by a part of your brain that isn’t really part of your brain. Now let’s talk about the asymmetry of the neuroendocrine system as it begins in your brain and ends in the endocrine glands.


Most views show the hypothalamus from the side
(see last week’s post), so you don’t appreciate that
there are two of each nucleus. For those that dump
hormones into the pituitary gland, both sides
participate, but our story today shows that they don’t
necessarily participate equally.
The hypothalamus, as well as the paired endocrine and neuroendocrine glands (see last week's post), demonstrate significant asymmetry. I suppose that’s not so unusual - all the structures we’ve talked about in the past few weeks have structural and functional asymmetries. The weird part about it here is that we are talking about hormones being moved into the blood.

The whole purpose of the hormone system is that it can be used to bathe the entire body in functional hormones at the precise levels, so that all cells that can respond will respond. How does that jibe with an asymmetry where one gland of a pair does more than the other?

The hypothalamus is a good example. You have two halves of your hypothalamus, one in each hemisphere (sort of, see above), but they both deposit releasing hormones into the same pituitary vein complex so they can stimulate your single pituitary gland. Yet, studies show that the right hypothalamus makes more gonadotropin-releasing hormone than the left hypothalamus.

On the other hand, thyrotropin-releasing hormone (stimulates the release of thyroid stimulating hormone, TSH, from the pituitary) is higher in the left hypothalamus. Together, the results of several studies shows that the right hypothalamus plays a bigger role in controlling reproduction, while the left hypothalamus works more in metabolic rate. You have a lateralization of structure and function in your two hypothalami, just like in your two cerebral hemispheres, even though both halves work on a single pituitary gland.

How about some of the other endocrine and neuroendocrine glands?

Thyroid –  You only have one thyroid gland, which lies over the front of your windpipe in your neck. There are two lobes, one on the right side and one on the left, connected by the isthmus across the windpipe.


The thyroid receives stimulation from the anterior
pituitary release of TSH (thyroid stimulating
hormone). If for some reason you get to much
stimulation (maybe autoantibodies), or the thyroid
start making too much thyroxin on its own (tumor),
then you have Grave’s disease. In some cases, you also
get an autoantibody during Graves that attacks the
fibroblasts around the orbit of the eye. The
inflammation makes the lid retract and pushes on the
eyeball, making it bulge out of the socket. Which of these
two has thyroid eye disease?
The thyroid releases thyroxine hormones T3 and T4 into the blood that function to control your metabolic rate (see this post). Yet the right lobe of the thyroid is more vascularized and is almost always larger than the left lobe. The thyroid also has a sexual dimorphism, as it is usually bigger in women than in men, and the asymmetry of right > left is even larger in women.

The size difference may not be innocuous. Many studies have shown that thyroid diseases and cancer affect the right lobe more often than the left. And it gets weirder. A 2009 research paper from China showed that handedness may also play a role. They found that the right > left size difference was larger in right-handed people. However, the left lobe was about the same size no matter which hand the person preferred. So, does the hand you use influence the size of the thyroid, or does your thyroid predict which hand you will use? Or, is it a correlation without significance?

Parathyroid – You have four parathyroid glands – maybe. These are located on the backside of your thyroid gland (hence the name para = by). The parathyroids are important in regulating calcium levels in the body. This may seem weird, having four glands to control the levels of one element. But consider that calcium plays some major roles, from controlling muscular contraction, to neuron transmission, to at least a dozen different second messenger systems in every cell.

The parathyroids are small, only about 33 mg each, so they are easy to lose when people have surgery on their thyroid gland. A 2011 study sought to find out where they sit normally so surgeons would be able to find them and preserve them. Unfortunately, they found that position and number are quite variable. Forty-three percent of people have at least five glands instead of four. And the positions of the four common ones can be variable, they aren’t always in the same place. The extra ones can be just about anywhere! Good hunting Mr. surgeon.


If you soak bone in vinegar (acetic acid), it will remove
the calcium and leave the protein matrix. Notice that it
must be the calcium that gives bone rigidity. This isn’t
how PTH works. PTH stimulates osteoclast activity,
which removes the calcium AND the protein matrix. PTH
also decreases the amount of calcium lost in the urine,
but for some reason, we work just fine without PTH or
without its balancer hormone, calcitonin.
The thyroid and parathyroid seem to do different jobs, but they’re linked by more than just anatomy. The parathyroid hormone (PTH) made and released by the parathyroids works to increase calcium availability, by increasing bone break down (osteoclast activity, see this post) and increasing the amount of calcium recovered from the urine.

But wouldn’t you need a balancing hormone to decrease calcium levels if they get too high, so a balance could be established? This is how many hormones work; there are hormone pairs that have opposite stimulatory functions. The balancing hormone for PTH is calcitonin, made by the neuroendocrine parafollicular cells (C cells) in the thyroid gland.

But here’s the exception. Calcitonin is important in fish and birds, but it seems people and many other mammals can get along fine without it. Remove someone’s thyroid and they have to take thyroid hormone for the rest of their life. But they get along just fine without calcitonin. This is one instance where the balancing hormone isn’t necessary. It seems an asymmetry of function in calcium regulation is just fine in people.

Adrenal glands -  These glands sit on top of each kidney. You think of them as sources of epinephrine in the fight or flight syndrome, but they do much more. Adrenal (ad = of or near, renal = kidney) glands have a cortex, which is toward the outside (not the core, this always confused me), and a medulla, which is in the middle (makes more sense).


cortex of three layers and a medulla. The cells of the two
regions are of different origin, the medulla is nerve like,
while the cortex is epithelial in origin.
The medulla is neuroendocrine, the cells look like neurons and are stimulated directly by sympathetic (autonomic) nerves (see this post). The medullary chromaffin (they take up lot of stain) cells release epinephrine and norepinephrine in response to a fight or flight situation. Epinephrine and norepinephrine are neurotransmitters in many parts of the brain, and in this case they work on cells to increase heart rate, glucose availability to muscle and the like.

The adrenal cortex is made up of three layers, each produces hormones to be released into the blood. The outside most is the zona glomerulosa, which makes aldosterone to help control osmolarity and blood pressure. The zona fasiculata is the biggest, and makes cortisol that controls the metabolic rate. The zona reticularis is inner most and makes sex hormones, androgens specifically.

You have two adrenal glands – and they each do the same things in response to the same signals, either hormonal or neural. So why is the left adrenal gland almost always bigger than the right? Is it because the venous drainage of the right and left adrenals is different? In the right, the veins dump into the inferior vena cava, while the left drains into the left renal vein. I really don’t know if that would make a difference.


This is just weird. A paper from 2005 states that since
the autonomic (sympathetic and parasympathetic)
nervous system controls the neuroendocrine system,
asymmetries in the ANS can have ramifications on
endocrine function. Asymmetry in behavior can
affect ANS, which then can affect endocrines. This study
showed that feeding cows from the left side (affects right
side ANS) improved reproductive ability and lactation; so
the right ANS must have more influence on reproductive
endocrine function. Could I have some left-hand milk please?
But here’s the kicker, a group in 2002 studied the size of the adrenal glands and their functional abilities in wild animals and their domesticated counterparts; several species of foxes, minks, etc. They found that domesticated animals had a larger size difference in adrenals than did the wild versions.

What is more, when they compared aggressiveness, no matter whether the animal was wild or domesticated, the most aggressive animals had the largest size differential – always left bigger than right. This makes it sound like the medulla was involved – aggression being involved, but it wasn’t.

The increase in left adrenal size in domesticated animals was due to an oversized zona fasiculata (cortisol and other glucocorticoids), while the left adrenal asymmetry in the aggressive animals was due to a larger zona reticularis (sex hormones). Ah… now that makes some sense. Doesn’t it always come back to sex?

Next week, let’s look more into the neuroendocrine system and gender. The testes and ovaries have the most spectacular asymmetries.

(The man had the hiccups)





Ying M, & Yung DM (2009). Asymmetry of thyroid lobe volume in normal Chinese subjects: association with handedness and position of esophagus. Anatomical record (Hoboken, N.J. : 2007), 292 (2), 169-74 PMID: 19051270

Trut LN, Prasolova LA, Kharlamova AV, & Plyusnina IZ (2002). Directional left-sided asymmetry of adrenals in experimentally domesticated animals. Bulletin of experimental biology and medicine, 133 (5), 506-9 PMID: 12420075

Rizhova, L., & Kokorina, E. (2005). Behavioural asymmetry is involved in regulation of autonomic processes: Left side presentation of food improves reproduction and lactation in cows Behavioural Brain Research, 161 (1), 75-81 DOI: 10.1016/j.bbr.2005.01.007

Hojaij, F., Vanderlei, F., Plopper, C., Rodrigues, C., Jácomo, A., Cernea, C., Oliveira, L., Marchi, L., & Brandão, L. (2011). Parathyroid gland anatomical distribution and relation to anthropometric and demographic parameters: a cadaveric study Anatomical Science International, 86 (4), 204-212 DOI: 10.1007/s12565-011-0111-0




For more information or classroom activities, see:

Hypthalamus – see last week’s post

Thyroid gland–

Parathyroid glands–

Adrenal glands-